

VIDYA BHAWAN, BALIKA VIDYAPITH

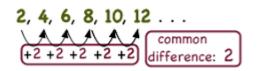
Shakti Utthan Ashram, Lakhisarai-811311(Bihar)

(Affiliated to CBSE up to +2 Level)

CLASS: X

 SUB.: MATHS
 DATE: 27-06-2021

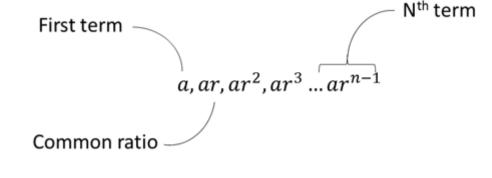
Arithmetic Progressions


Sequences, Series and Progressions

- A **sequence** is a finite or infinite list of numbers following a certain pattern. For example: 1, 2, 3, 4, 5... is the sequence, which is infinite. Sequence of natural numbers.
- A **series** is the sum of the elements in the corresponding sequence. For example: 1+2+3+4+5....is the series of natural numbers. Each number in a sequence or a series is called a term.
- A progression is a sequence in which the general term can be can be expressed using a mathematical formula.

There are three types of **progression**

Arithmetic Progressions


An Arithmetic Progression is a sequence of numbers in which we get each term by adding a particular number to the previous term, except the first term.

Geometric Progression

A Geometric Progression is a sequence of numbers in which we get each term by multiplying or dividing a particular number to the previous term, except the first term.

The ratio between every term to the next term is constant.

nth term of the Geometric Sequence Harmonic Progression

It is the reverse of Arithmetic Progression. If a, a + d, a + 2dis an Arithmetic Progression then the harmonic progression is

$$\frac{1}{a}, \frac{1}{a+d}, \frac{1}{a+2d}, \dots$$

nth term of Harmonic Progression

Arithmetic Progression

An arithmetic progression (A.P) is a progression in which the **difference** between two **consecutive** terms is constant. Example: 2, 5, 8, 11, 14.... is an arithmetic progression.

Common Difference

The difference between two consecutive terms in an AP, (*which is constant*) is the "**common difference**"(**d**) of an A.P. In the progression: *2, 5, 8, 11, 14* ...the common difference is 3. As it is the difference between any two consecutive terms, for any A.P, if the common difference is:

- **positive**, the AP is **increasing**.
- zero, the AP is constant.
- **negative**, the A.P is **decreasing**.
- Each number in the sequence is known as **term**.
- The fixed number i.e. the difference between each term with its preceding term is known as **common difference**. It can be positive, negative or zero. It is represented as 'd'.

Some Examples of Arithmetic Progressions

Common difference	Value of d	Example
d > 0, positive	10	20, 30, 40, 50,
d < 0, negative	-25	100, 75, 50, 25, 0
d = 0, zero	0	5, 5, 5, 5,

General form of Arithmetic Progression

$$a,a+d,a+2d,a+3d,\ldots$$

Where the first term is **'a'** and the common difference is **'d'**.

Example

Given sequence is 2, 5, 8, 11, 14, ...

Here, a = 2 and d = 3

d = 5 - 2 = 8 - 5 = 11 - 8 = 3

First term is a = 2

Second term is a + d = 2 + 3 = 5

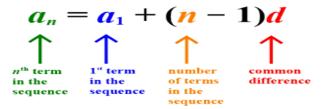
Third term is a + 2d = 2 + 6 = 8 and so on.

Finite or Infinite Arithmetic Progressions

1. Finite Arithmetic Progression

If there are only a limited number of terms in the sequence then it is known as **finite** Arithmetic Progression.

229, 329, 429, 529, 629


2. Infinite Arithmetic Progression

If there are an infinite number of terms in the sequence then it is known as **infinite** Arithmetic Progression.

2, 4, 6, 8, 10, 12, 14, 16, 18

The nth term of an Arithmetic Progression

If a_n is the nth term, a_1 is the first term, n is the number of terms in the sequence and d is a common difference then the nth term of an Arithmetic Progression will be

Example

Find the 11th term of the AP: 24, 20, 16, ...

Solution

```
Given a = 24, n = 11, d = 20 - 24 = -4
a<sub>n</sub> = a + (n - 1) d
a<sub>11</sub> = 24 + (11-1) - 4
= 24 + (10) - 4
```

=24 - 40

= -16